New Insights into VOPO₄ Phases through Their Hydration

Farid Benabdelouahab,* Jean-Claude Volta,† and René Olier*,1

*Laboratoire de Physicochimie des Interfaces, URA CNRS 404, Ecole Centrale de Lyon, B.P.163 F-69131 Ecully Cedex, France; and †Institut de Recherches sur la Catalyse, CNRS 2, Avenue Albert Einstein, F-69626 Villeubanne Cedex, France

Received September 8, 1993; revised February 25, 1994

Some VOPO₄ phases can be involved when the V-P-O catalysts used to oxidize n-butane to maleic anhydride are activated. Evidence is given that correct characterization can only be achieved if the catalysts are protected from hydration. Hydration of VOPO₄ phases (α_1 -, α_{11} -, β -, γ -, δ -) was monitored by Raman spectroscopy. It is shown that, with the exception of β -VOPO₄, all VOPO₄ phases can be hydrated, with hydration leading to the same VOPO₄ · 2H₂O. NH₃ was also intercalated within α_1 -VOPO₄. These experiments give clues to a unified description of all (with the exception of β -VOPO₄) VOPO₄ phases as layered arrangements of VO₆ distorted octahedra linked by PO₄ tetrahedra. Proposals are given for the structure of γ - and δ -VOPO₄. The proposed structure of δ -VOPO₄ allows epitaxy of this peculiar phase onto (VO)₂P₂O₇ as well as growth of α_{11} -VOPO₄ onto δ -VOPO₄.

INTRODUCTION

A number of papers (1-5) have been concerned with the capability of the vanadium phosphate V-P-O system to catalyze *n*-butane oxidation to maleic anhydride. Nonetheless, there is still controversy as to which phases really work during the catalytic process. An entire volume of *Catalysis Today* (6) was recently dedicated to the subject.

Most frequently, catalysts are prepared by thermal activation of the precursor $VOHPO_4 \cdot 0.5H_2O$ in a butane + air flow (7). The activation treatment consists in a gradual increase in temperature from room temperature to $400-450^{\circ}C$, which corresponds to catalytic conditions.

The different authors agree that catalysts are mainly pyrophosphate $(VO)_2P_2O_7$, but as the average oxidation number is usually found to be slightly higher than +4, they think that some phases with vanadium at +5 oxidation number may be involved, particularly during the activation process (8-12).

Review articles on the subject reveal that nomenclature itself (1) differs from one author to another, and that it is sometimes difficult, if even possible, to compare results

¹ To whom correspondence should be addressed. Present address: Département de Chimie, CR4, UFR "Sciences et Techniques," Université de Bretagne Occidentale, B.P. 809, 29285 Brest Cedex, France.

from different laboratories due to the fact that catalysts are not always sufficiently characterized. In a recent paper (12) we emphasized the characterization of phases of interest in these studies, that is to say, the five different allotropic forms of vanadyl phosphate, α_{I^-} , α_{II^-} , β -, γ -, δ -VOPO₄, as well as the precursor VOHPO₄ · 0.5H₂O, vanadyl pyrophosphate (VO)₂P₂O₇, or the dihydrate VOPO₄, 2H₂O.

Each of these phases was characterized by its X-ray diffraction pattern, ³¹P and ⁵¹V NMR spectra, and Raman spectrum. We showed that Raman spectroscopy is particularly well suited to studying vanadyl phosphates even in difficult conditions such as in the presence of mixtures or at high temperatures.

Amongst these phases, some are well known, as their structure has been refined: VOHPO₄ · 0.5H₂O (13–14), (VO)₂P₂O₇(15), α_1 -, and α_{II} -VOPO₄ (16, 17, respectively), and β -VOPO₄ (18).

 γ - and δ -VOPO₄ structures are as yet unknown, even if structural hypotheses have been published (12, 20).

This paper mainly aims to characterize the VOPO₄ phases better. In this respect, modification of Raman spectra during hydration is of major importance. We will show that if the dihydrate VOPO₄ \cdot 2H₂O may be observed in used catalysts, this results from careless handling of the samples. Special care must be taken in order to avoid hydration of phases for fear of loss of information regarding the real nature of the catalyst. Hydration will also provide a way to a better understanding of structural relations between these phases and give clues for γ - and δ -VOPO₄ structure elucidation.

EXPERIMENTAL

Figure 1 provides an overview of preparation conditions for the pure phases as described elsewhere (12). The phases were characterized by X-ray diffraction, ³¹P NMR, ⁵¹V MAS-NMR, and Raman spectroscopy.

For hydration, all the VOPO₄ phases were submitted, at room temperature, to an air flow saturated in water by bubbling through a humidifier. Laser Raman spectroscopy (LRS) examinations were conducted *in situ* in the cell as

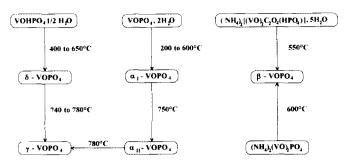


FIG. 1. Overview of preparation conditions of VOPO₄ phases (by calcination under air flow).

described elsewhere (12). The hydration process of the VOPO₄ phases was followed with continuous registration of the LRS spectra (details are given in Fig. 2's caption).

The α_1 -VOPO₄ phase was the subject of tentative intercalation of ammonia (NH₃) on a separate glass apparatus. This particular phase was put into contact with pure NH₃ at room temperature and then sealed until the LRS examination. From the beginning to the end of the LRS examination, when the solid was put back into contact with dry air, 10 min elapsed.

Raman spectra were recorded by means of a DILOR OMARS 89 spectrometer equipped with an intensified photo diode array detector (12). The emission line at 514.5 nm of an Ar⁺ ion laser (Spectra Physics Model 164) was used for excitation. The power of the beam on the sample was typically around 35 mW. Acquisition time was up to 10 s (typically 3 s) adjusted according to the intensity of Raman scattering. In order to reduce both thermal- and photodegradation of samples, the laser beam was scanned on the sample surface by means of a rotating lens in the way described by Zimmerer and Kiefer (21). The scattered light was collected in the back-scattering geometry.

Thanks to multichannel detection, the 800-1200 cm⁻¹ range was accessible in a single shot. As this particular range was sufficient to characterize unambiguously all the phases of interest, it was the only one recorded. Wave number values obtained from experimental spectra were accurate to within about 2 cm⁻¹.

RESULTS AND DISCUSSION

Hydration

With the notable exception of β -VOPO₄, which can be considered as insensitive to hydration, all VOPO₄ phases undergo a more or less rapid hydration at room temperature.

Figure 2 shows the evolution of Raman spectra of each of the phases α_{I^-} , α_{II^-} , γ_- , and δ -VOPO₄ in the course of hydration. It can be immediately noted that:

- (1) In each case the ultimate spectrum was that of the VOPO₄, 2H₂O phase. This point was confirmed by X-Ray diffraction.
- (2) The duration necessary to obtain this particular spectrum depended on the starting phase. While 45 min were enough for complete hydration of α_1 -VOPO₄, it took about 10 h for α_{11} -VOPO₄, and about 3 h for both γ and δ -VOPO₄.
- (3) At the beginning of α_1 -VOPO₄ hydration, a new band appeared at about 1010 cm⁻¹, which disappeared after a few minutes. This may have been due to transient formation of the monohydrate VOPO₄ · H₂O, a species already reported by several authors (22–24); this particular band has never been observed in other phase hydration.

A more detailed study of spectra changes showed that during hydration of α_1 -VOPO₄ the experimental spectra resulted from a linear combination of α_1 -VOPO₄ and VOPO₄ · 2H₂O spectra (with the exception of the 1010

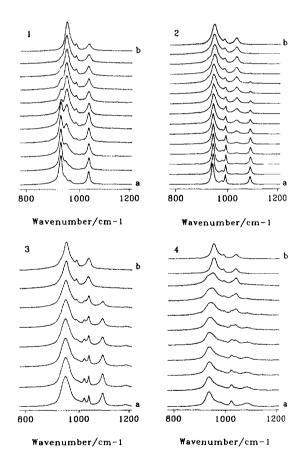


FIG. 2. Evolution of Raman spectra of VOPO₄ phases during hydration: (a) before hydration, and (b) after complete hydration. Spectra were acquired in 3 s each with accumulation of 50 to improve signal to noise ratio. Selected spectra, regularly spaced in time, are shown. Complete hydration occurred after 45 min, 10 h, 3 h, and 3 h, respectively, for (1) α_1 -VOPO₄, (2) α_{11} -VOPO₄, (3) γ -VOPO₄, and (4) δ -VOPO₄.

cm⁻¹ band). This was not the case for the other phase hydration.

Structural Considerations

These behaviours could easily be understood by comparing the crystalline structures of the phases (when known, i.e., α_{I} - (16), α_{II} - (17) and β -VOPO₄ (18) and VOPO₄ · 2H₂O (19)).

 α_{I} -, α_{II} -, and β -VOPO₄ are made up of PO₄ tetrahedra and distorted VO₆ octahedra (a long V···O bond opposed to a short V=O bond and four V-O_{equatorial} bonds). All these phases exhibit alternate long and short bonds giving octahedra chains along the z direction.

In the β -VOPO₄ structure each PO₄ tetrahedron links two octahedra belonging to the same octahedra chain (two of the oxygen atoms of the PO₄ are shared with two adjacent octahedra of the same chain), while the other two oxygen atoms are shared with octahedra belonging to different chains (thus, each PO₄ is linked to three octahedra chains). As a result, the β -VOPO₄ structure, unlike α -VOPO₄, does not exhibit a layered structure.

In the α -VOPO₄ structures (both α_1 - and α_{II} -), oxygen atoms from every tetrahedron are shared with octahedra belonging to four different chains (22). These phases, as

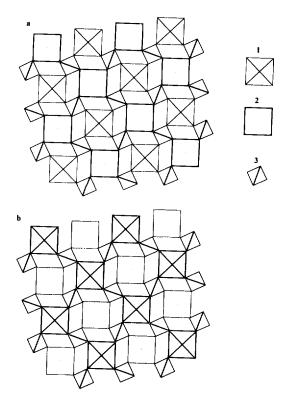


FIG. 3. Schematic representation of α -VOPO₄ phase structures: (a) α_1 -VOPO₄ and (b) α_{11} -VOPO₄. (1) and (2) represent VO₆ octahedra, (3) a PO₄ tetrahedron. Heavy lines represent elements on the upper floor (see text), while fine lines are related to the lower floor within the layer. Broken lines indicate that V=O short bonds are directed downwards.

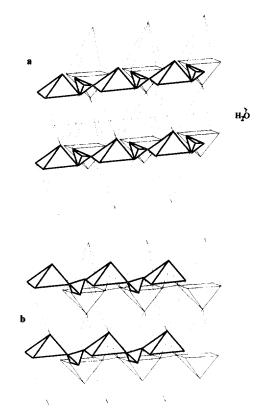


FIG. 4. Interlayer space in (a) $\alpha_{\rm I}$ -VOPO₄ and (b) $\alpha_{\rm II}$ -VOPO₄. Obviously, the thickness of layers is greater in the case of $\alpha_{\rm II}$ -VOPO₄, while interlayer space is larger and more able to allow water molecule movements in the case of $\alpha_{\rm I}$ -VOPO₄.

schematically represented in Fig. 3, exhibit a layered structure, the links between adjacent layers being the V···O long bonds.

The main difference between α_1 - and α_{II} -VOPO₄ structures is the different positions of vanadium and phosphorus atoms relative to the equatorial plane of the octahedra (22). In α_I -VOPO₄, vanadium and phosphorus atoms are on the same side of the equatorial oxygen atom plane, while in the α_{II} -VOPO₄ structure they are on opposite sides. It must also be noted that each layer in these phases can be considered to be composed of two sheets, later referred to as the lower and the upper floors. Equatorial oxygen atoms of any VO₆ octahedron belong to the same floor.

In the VOPO₄ · $2H_2O$ structure, PO₄ tetrahedra—as in α - phases—share their oxygen atoms with octahedra belonging to four different chains. The long V···O bond is replaced by a V-OH₂ bond, hydrogen bonds maintaining cohesion between adjacent layers. Vanadium and phosphorus atoms—as in the α_1 -VOPO₄ phase—are on the same side of the equatorial plane.

Figure 4 shows the interlayer space in α_1 - and α_{II} - VOPO₄ cases. The space is perfectly open in α_1 - and is

large enough to allow water molecule movements, allowing them to interact with vanadium atoms opposite the V=O short bonds without any structural modification within the layers.

It therefore seems logical that during hydration of α_1 -VOPO₄ we observe mainly a mixture of α_1 -VOPO₄ and VOPO₄, $2H_2O$. In contrast, in the α_{11} -VOPO₄ structure the interlayer space is much more congested, short V=O bonds hindering the movement of water molecules, resulting in a much lower hydration rate. Moreover, in this second case, when a water molecule interacts with a vanadium atom, the latter must move inside its octahedral environment from an α_{11} -type position to an α_1 - one, to finally give the VOPO₄ \cdot $2H_2O$ structure. It is thus most probable that in this case hydration occurs through a more intricate process needing more steps than in the α_1 -VOPO₄ case.

It is worth noting that $\alpha_{\rm I}$ -VOPO₄ hydration, very quick at room temperature, can be avoided by maintaining the sample at a temperature above about 40°C. Temperature effects on $\alpha_{\rm I}$ -VOPO₄ hydration were studied by decreasing the temperature from 140°C to room temperature under wet air flow. It was only below 37°C that the spectrum began to change with the appearance of the characteristic band of VOPO₄ \cdot 2H₂O at 954 cm⁻¹. Moreover, when the temperature of a VOPO₄, 2H₂O sample was increased from room temperature up to 180°C the spectrum began to change at about 80°C, finally leading to the $\alpha_{\rm I}$ -VOPO₄ spectrum. It has to be pointed out that dehydration of VOPO₄ \cdot 2H₂O samples obtained by hydration of $\alpha_{\rm I}$ -, $\alpha_{\rm II}$ - γ -, or δ -VOPO₄ always led to $\alpha_{\rm I}$ -VOPO₄. This led to the conclusion that

- (1) if VOPO₄, 2H₂O is observed in used catalysts, it may be the result of careless handling, and
- (2) if hydration of VOPO₄ phases occurs, there will always be a loss of information as to the previous nature of the compound.

Before discussing the implications of γ - and δ -VOPO₄ phase hydration, it is interesting to consider the effect of other intercalated molecules than water.

Such an experiment was done with the α_1 -VOPO₄ phase only. NH₃ molecules were intercalated between α_1 -VOPO₄ layers (in a sealed tube). Then subsequent NH₃ desorption—after breaking the tube and contacting a dry atmosphere—was followed by Raman spectroscopy, as previously described. The spectrum (Fig. 5) changed quickly in 10 min due to the evolution of NH₃ molecules, but in contrast to the dehydration process, the final product was not α_1 -VOPO₄ but a mixture of VOPO₄ phases. Unfortunately, complete deconvolution of the corresponding spectra was impossible because these phases were all badly crystallised and the width of Raman bands is known to be crystallinity dependent. However, the final spectrum exhibits sufficient specific features (bands in

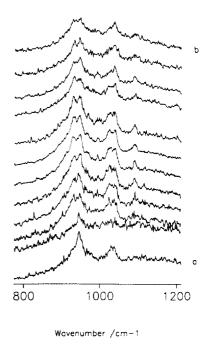


FIG. 5. Evolution of the Raman spectrum of an NH_3 -intercalated α_1 -VOPO $_4$ during deintercalation. Ten min elapsed between the first and the last spectrum.

characteristic positions, shape of the 1060-1090 cm⁻¹ band) to indicate that the final product was a mixture of all VOPO₄ phases, with the notable exception of β -VOPO₄.

This led us to the hypothesis that α_{1} -, α_{11} -, γ -, and δ -VOPO₄ are built from the same structural units; that is to say, γ - and δ -VOPO₄ must possess a layered structure, considering the ease of hydration, and also octahedra chains linked through PO₄ tetrahedra in the way common to α_{1} - and α_{11} -VOPO₄, i.e., each PO₄ tetrahedron sharing its oxygen atoms with VO₆ octahedra from four different chains.

Taking into account arguments from comparison of Raman spectra of the different VOPO₄ phases and from the study by Lashier and co-workers (25, 26) of oxidation of vanadyl pyrophosphate (VO)₂P₂O₇ to β -VOPO₄ by means of ¹⁸O₂, we were able to propose a structural scheme for γ -VOPO₄ (12).

Figure 6 shows the arrangement of octahedra and tetrahedra within the layers (6a) and the interlayer space (6b). This space is not so open as in α_1 -VOPO₄, but not so congested as in α_{11} -VOPO₄. In the course of hydration, only one atom of vanadium out of two will have to move from its position in the octahedra to lead to the VOPO₄ · 2H₂O structure in accordance with the respective hydration rates of the phases.

To derive a structural scheme for δ -VOPO₄ we used its preparation mode as a guide line. δ -VOPO₄ derives from VOHPO₄ · 0.5H₂O by oxydehydration at a temperature comprised between 400 and 580°C (12, 20). We must also

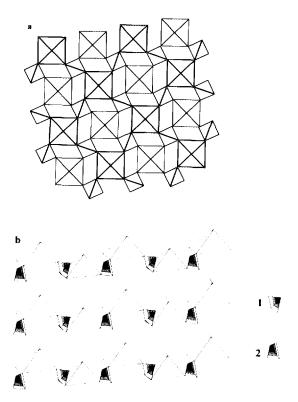


FIG. 6. Idealized structural scheme for γ -VOPO₄: (a) projected on a plane parallel to the layers, (b) interlayer space represented in one of the directions given in (a). (1) and (2) represent tetrahedra; black apices indicate their orientation. In order to clearly show interlayer space VO₆ distorted octahedra are represented in a simplified manner.

remember that hydration and NH₃ intercalation experiments led us to the conclusion that δ -VOPO₄ must possess a layered structure with the same features (VO₆ octahedra and PO₄ tetrahedra) linked in a similar way as in α_1 -, α_{11} -, and γ -VOPO₄; i.e., oxygen atoms from every tetrahedron shared with octahedra belonging to four different chains.

Preparation of δ-VOPO₄ from VOHPO₄ · 0.5H₂O requires the elimination of water molecules and the oxidation of vanadium from a + 4 to a + 5 oxidation number. Figure 7 presents an idealized picture of the VOHPO₄. 0.5H₂O structure (a). Idealizing slightly more, let us suppose that PO₃(OH) can be represented by a true tetrahedron. When the bond between a vanadium atom, V_1 , (inside the Oh₁ octahedron) and a water molecule breaks in the presence of an oxidizing atmosphere, the V₁ atom can be oxidized to +5 oxidation number, resulting in a stronger interaction with the equatorial oxygen atoms of its octahedra. The next step may be the oxidation of the V_2 atom (inside the Oh₂ octahedron) to +5 oxidation number with the reconstruction of a "normal" environment by rocking the two nearest tetrahedra, T_1 and T_2 . If both rotate in the same direction each of the vanadium atoms will bond with the oxygen of a previous OH and this will probably introduce strong distortion within the layer. If they rotate in opposite directions this will lead to the establishment of new bonds for V_2 (for example) only, V_1 keeping the two oxygen atoms previously shared with V_2 . In that case distortions will probably be weaker.

The resulting structure (7b) is a layered one and corresponds to the formula VOPO₄. But it is different from the other VOPO₄ structures previously described even if it exhibits chains of octahedra with alternate short and long V···O bonds. In VOHPO₄ · 0.5H₂O, short V=O bonds of adjacent octahedra are in the *cis* position and the proposed scheme does not change this. A distinctive feature of this structural hypothesis is the appearance of lines of octahedra with their short bonds directed upwards alternating with lines in which they are directed downwards. Ideally, this transformation leads to a structure in which the vanadium atom environments are from the α_{I^-} or the α_{I^-} type, one vanadium atom out of two belonging to

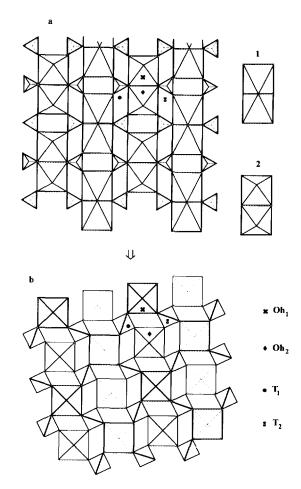


FIG. 7. Proposal for oxydehydration of VOHPO₄, $0.5H_2O$ to δ -VOPO₄: (a) VOHPO₄, $0.5H_2O$ idealized structure, top view. (1) and (2) represent couples of VO₆ octahedra sharing one side, with V=O short bonds directed respectively downwards and upwards. Opposite these bonds are the V-OH₂ bonds. (b) A proposal for the δ -VOPO₄ structure projected onto a plane parallel to layers. Oh₁, Oh₂, T₁, and T₂ represent particular octahedra and tetrahedra (see text).

each category. But unlike γ -VOPO₄, each α_1 - type V⁵⁺ is not surrounded by α_{11} - type V⁵⁺ only.

δ-VOPO₄ would, then, be made up of the same structural units as the other hydratable VOPO₄ phases; that is to say, distorted VO₆ octahedra linked by PO₄ tetrahedra in such a way that each PO₄ tetrahedron shares its oxygen atoms with four VO₆ octahedra belonging to four different chains.

Even if the structure is a layered one, the interlayer space is different from the other VOPO₄ layered phases as it exhibits channels separated by bridges in which the layers are as close as in the α_{11} -VOPO₄ phase structure. This may lead to distortions giving V-O_{eq}-P angle values comprised between those observed in α_1 - and α_{11} -VOPO₄. These distortions are most probably less symmetrical than in the case of the γ -VOPO₄ structure in which every α_1 type group is surrounded only by α_{II} - types, and conversely. It should be noted that as in γ-VOPO₄, hydration requires one vanadium atom out of two to move from its position within its octahedron to actually give the VOPO₄ · 2H₂O structure. It is worth noting that our proposed δ-VOPO₄ structural scheme is at variance with the model proposed by E. Bordes with two VO₆ octahedra joined by the edges as in (VO)₂P₂O₂ (20). However, it allows the building of a continuous interface between $(VO)_3P_3O_7$ and δ -VOPO₄, as well as between δ -VOPO₄ and α_{II} -VOPO₄. An idealized model for these interfaces is shown on Fig. 8.

This point must also be related to the observation by in situ Raman spectroscopy of δ - and α_{II} -VOPO₄ in a catalyst obtained by activation of the precursor

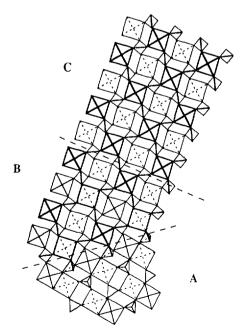


FIG. 8. Structure of interfaces between (VO)₂P₂O₇ (A) and δ -VOPO₄ (B), and between δ -VOPO₄ (B) and α_{11} -VOPO₄ (C).

VOHPO₄ · 0.5H₂O (11), and the partial transformation of δ -VOPO₄ to α_{II} -VOPO₄ under conditions of butane-selective oxidation to maleic anhydride, i.e., butane + air flow at a temperature around 420°C (12).

CONCLUSION

In this paper we demonstrated that four allotropic forms of $VOPO_4$ are easily hydrated to give $VOPO_4 \cdot 2H_2O$, resulting in a loss of information as to the previous nature of the V(+5) phase when hydration occurs.

We were also able to state that all VOPO₄ phases, with the exception of β -VOPO₄ may be represented by a general scheme. All these phases must possess:

- (1) chains of VO₆ octahedra with alternate long V···O and short V=O bonds;
- (2) PO₄ tetrahedra, each linked to four octahedra belonging to four different chains; and
- (3) layered structures in which two distinct levels of equatorial oxygen atoms (bottom floor and upper floor) can be observed.

Differences between these phases are mainly due either to different arrangements of octahedra within the layers or relative to tetrahedra.

In α_1 -VOPO₄, V=O short bonds are directed to the interior of the layer (the oxygen atoms of the V=O short bonds are between the bottom and the upper floors).

In α_{II} -VOPO₄, each V=O short bond is directed outwards (the oxygen atoms of the V=O short bonds are below the bottom floor or above the upper floor).

In γ -VOPO₄, every V=O short bond is presumed to be directed in one direction (say upwards) regardless of belonging to the bottom or the upper floor.

δ-VOPO₄ is presumed to exhibit lines of adjacent octahedra with their V=O short bonds directed upwards alternating with lines in which they are directed downwards, regardless of belonging to the bottom or the upper floor.

We also show that, on this basis, continuous coherent interfaces may be built between $(VO)_2P_2O_7$ and δ -VOPO₄ and between δ - and α_{II} -VOPO₄, which may explain the occurrence and transformations of the last two phases in the working catalyst during transformation of *n*-butane to maleic anhydride.

Of course, it should be remembered that this scheme is an idealized one.

REFERENCES

- 1. Hodnett, B. K., Catal. Today 1, 477 (1987).
- Centi, G., Trifiro, F., Ebner, J. R., and Franchetti, J. M., Chem. Rev. 88, 55 (1988).
- 3. Bordes, E., Catal. Today 1, 499 (1987).
- 4. Shimoda, T., Okuhara, T., and Misono, M., Bull. Chem. Soc. Jpn. 58, 2163 (1985)
- 5. Moser, T. P., and Schrader, G. L., J. Catal. 92, 216 (1985).

- 6. Catal. Today, 16, 1-153 (1993). (the entire volume)
- 7. Hutchings, G. J., Appl. Catal. 72, 1 (1991).
- 8. Centi, G., Fornasari, G., and Trifiro, F., J. Catal. 89, 44 (1984).
- Contractor, R. M., Bergna, H. E., Horowitz, H. S., Blackstone, C. M., Malone, B., Torardi, C. C., Griffiths, B., Chowdhury, U., and Sleight, A. W., Catal. Today 1, 49 (1987).
- 10. Contractor, R. M., and Sleight, A. W., Catal. Today 3, 175 (1988).
- Volta, J. C., Bere, K., Zhang, Y. J., and Olier, R., in "Catalytic Selective Oxidation" (S. T. Oyama and J. W. Hightower, Eds.), ACS Symposium Series, Vol. 523, p. 217. Amer. Chem. Soc., Washington, D.C., 1993.
- Benabdelouahab, F., Olier, R., Guilhaume, N., Lefebvre, F., and Volta, J. C., J. Catal. 134, 151 (1992).
- Leonowicz, M. E., Johnson, J. W., Brody, J. F., Shannon, M. F., and Newsam, J. M., J. Solid State Chem. 56, 370 (1985).
- 14. Torardi, C. C., and Calabrese, J. C., Inorg. Chem. 23, 1308 (1984).
- Linde, S. A., Gorbunova, Yu. E., Lavrov, A. V., and Kuznetsov, V. G., Dokl. Akad. Nauk SSSR 245, 584 (1979).

- Bordes, E., Courtine, P., and Pannetier, G., Ann. Chim. Paris 8, 105 (1973).
- 17. Jordan, B., and Calvo, C., Can. J. Chem. 51, 2621 (1973).
- 18. Gopal, R., and Calvo, C., J. Solid State Chem. 5, 432 (1972).
- 19. Tietze, H. R., Aust. J. Chem. 34, 2035 (1981).
- Bordes, E., Johnson, J. W., Raminosona, A., and Courtine, P., Mater. Sci. Monogr. 28B, 887 (1985).
- 21. Zimmerer, N., and Kiefer, W., Appl. Spectrosc. 28, 279 (1974).
- Tachez, M., Theobald, F., and Bordes, E., J. Solid State Chem. 40, 280 (1981).
- Tachez, M., Theobald, F., Bernard, J., and Hewat, A. W., Rev. Chim. Miner. 19, 291 (1982).
- R'kha, C., Vandenborre, M. T., Livage, J., Prost, R., and Huard, E., J. Solid State Chem. 63, 202 (1986).
- Lashier, M. E., Moser, T. P., and Schrader, G. L., in "Surface Science and Catalysis" (G. Centi, and F. Trifiro, Eds.), Vol. 55, p. 573. Elsevier, Amsterdam, 1990.
- 26. Lashier, M. E., and Schrader, G. L., J. Catal. 128, 113 (1991).